L'IA: un outil pour mieux prédire le risque

P Taourel (CHU Montpellier)

L'IA: un outil pour mieux prédire le risque?

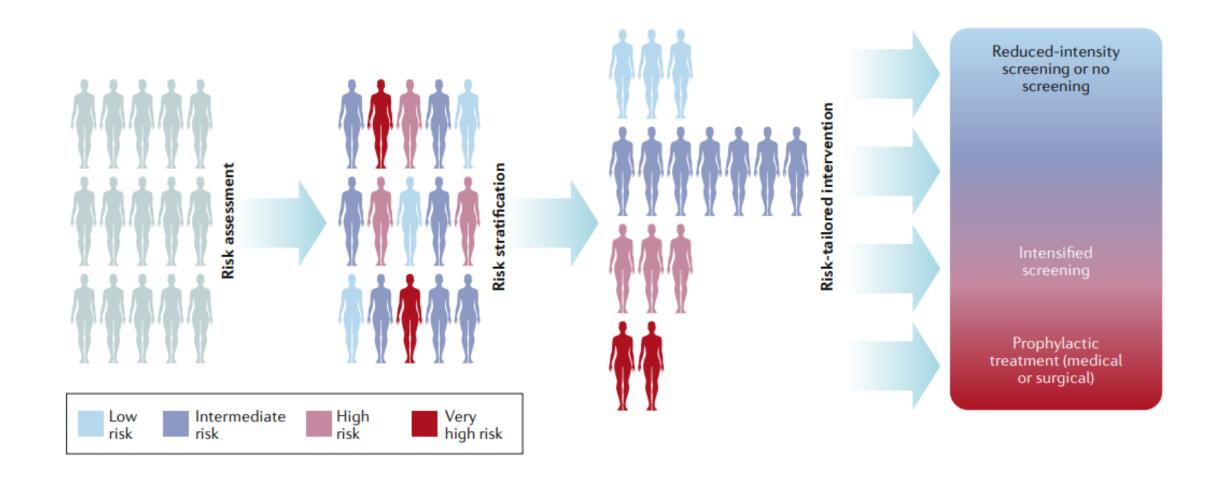
• Pourquoi la question est pertinente ?

• Comment cela marche ? Du plus simple au plus compliqué

Avec quels résultats ?

Et quelles limites ?

L'IA: un outil pour mieux prédire le risque?


Pourquoi la question est pertinente ?

• Comment cela marche ? Du plus simple au plus compliqué

Avec quels résultats ?

Et quelles limites ?

Prédire le risque a un impact

Le dépistage personnalisé (cad adapté au risque mais aussi

à la psychologie de chacune) est une demande

CONCERTATION CITOYENNE ET SCIENTIFIQUE

NOS RECOMMANDATIONS

Ce que nous attendons du dépistage du cancer du sein, organisé ou non :

- Qu'il évolue en fonction des avancées scientifiques et technologiques (amélioration des appareils, nouveaux systèmes de détection, nouvelles méthodes de dépistage...). L'appareillage et l'examen doivent devenir moins traumatisants (notamment physiquement).
- Que plus de moyens soient attribués à la recherche et au développement de techniques nouvelles.
- Que le dépistage soit plus ciblé et plus adapté à chaque situation individuelle.
- Que l'information soit accessible pour tous et faite de façon ciblée et adaptée à la personne.
 Individuellement, chacun-e devrait avoir la possibilité d'effectuer un entretien s'il le souhaite et de
 pouvoir échanger verbalement (de visu ou par téléphone) afin de pouvoir poser toute question
 essentielle à l'appropriation des enjeux du dépistage. Nous estimons nécessaire de pouvoir être
 informé-e-s pour nous permettre de faire un choix libre et éclairé.
- Que les délais d'attente pour passer les examens mammographiques soient identiques pour toutes.
- Qu'il soit efficace, tout en étant plus humain, et en respectant les sensibilités de chacun-e. Il doit prendre en compte autant les aspects physiques (comme l'inconfort, voire la douleur, liée à la mammographie) que psychologiques.
- Que le dépistage devienne plus accessible sur l'ensemble du territoire, notamment à l'aide de dépistage mobile (camions de mammographies par exemple).

IA et prédiction du risque

- Evaluer les effets sur la santé de n'importe quel ensemble de données accessibles (p. ex. génétique, environnement, comportement) : patient reconstitué (NEJM 2017)
- Dans tous les domaines de la santé : des maladies CV aux maladies neuro-cognitives

• Et même hors santé : prévision des feux de forêt ou d'autres catastrophes naturelles

Flood Hub

Demandez votre diagnostic IA

Soyez mis en relation avec un expert en IA pour réaliser votre diagnostic.

- Découvrez comment tirer profit de l'IA dans votre entreprise.
- Mettez en place un plan d'action et soyez accompagné dans votre phase d'expérimentation et d'implémentation.
- Bénéficiez de jusqu'à 50% de subvention sur vos prestations.

Un service proposé par ActulA, le portail de l'intelligence artificielle depuis 2017.

1→ Quel est votre secteur d'activité ?

Industrie

Technologie

Santé et services sociaux

Finance et assurances

Avec la crainte d'un diagnostic de risque erroné

Prédiction des besoins de santé aux EU : augmentation de la population noire : moins de besoin de santé à anticiper

Obermeyer Z, Powers B, Vogeli C, Mullainathan S.. Dissecting racial bias in an algorithm used to manage the health of population Science 2019;366(6464):447-53.

L'IA en imagerie: un outil pour mieux prédire le risque de cancer du sein ?

Pourquoi la question est pertinente ?

• Comment cela marche ? Du plus simple au plus compliqué

Avec quells résultats ?

• Et quelles limites ?

Prédiction du risque : la densité mammaire

• 1. La densité mammaire fait partie des dernières versions des modèles de risque (Boadicea, myPEBS ...)

• 2. Nombreux algorithmes pour mesurer la DM par l'IA approuvés par

la FDA

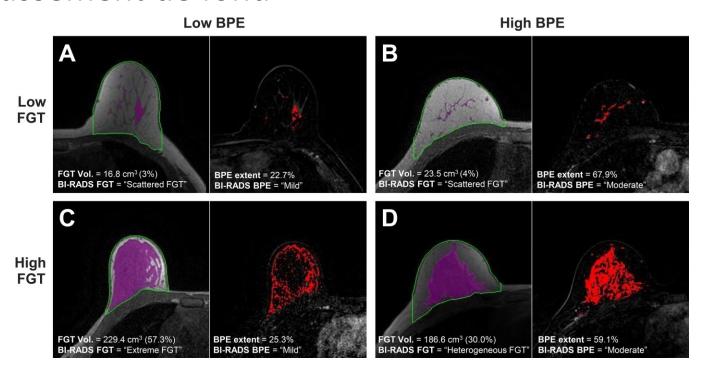
Density Quantification					
cmDensity™	CureMetrix, Inc.	United States	Mammography		
IntelliMammo [™] densityai™	Densitas [®]	Canada	Mammography		
PowerLook® Density Assessment	iCAD, Inc.	United States	Mammography		
Quantra™ 2.2	Hologic [®] , Inc.	United States	Mammography and Tomosynthesis		
Saige-Density TM	DeepHealth, Inc.	United States	Mammography and Tomosynthesis		
Syngo.BreastCare	Siemens [®]	Germany	Mammography		
Visage Breast Density	Visage Imaging, Inc.®	United States	Mammography		
Volpara TruDensity®	Volpara Imaging	New Zealand	Mammography		
WRDensity	Whiterabbit.ai	United States	Mammography		

Prédiction du risque : la densité mammaire

- 1. La densité mammaire fait partie des dernières versions des modèles de risque
- 2. Nombreux algorithmes pour mesurer la DM par l'IA approuvés par la FDA
- 3. Evolution du BIRADS sur la densité mammaire : prédiction du risque de manquer un cancer

BIRADS 4 ^{ième} edition	BIRADS 5 ^{ième} édition
Moins de 25% de tissus non graisseux	Presque entièrement graisseux
25-50% de tissus non graisseux	Des zones dispersées de tissus fibro- glandulaire
50-75% de tissus non graisseux	Hétérogène qui peut gêner la détection de masse
Plus de 75% de tissus non graisseux	Très dense qui diminue la Sen de la mammographie

Prédiction du risque : la densité mammaire


Prédiction du risque : le rehaussement matriciel de fond

• 1. L'intensité du rehaussement matriciel de fond est associé à une augmentation du risque de cancer du sein

_	Baseline BPE			Multiple BPE Measures per Woman		
Total	Women With Cancer, No. (%; n = 176 women)	Women Without Cancer, No. (%; n = 4,071 women)	Hazard Ratio* (95% CI)	Women With Cancer, No. (%; n = 255 observations)	Women Without Cancer, No. (%; n = 6,385 observations)	Hazard Ratio* (95% CI)
BI-RADS BPE (4 categories)						
Minimal	36 (20)	1,397 (34)	Reference	66 (24)	2,342 (37)	Reference
Mild	47 (27)	1,257 (31)	1.80 (1.12 to 2.87)†	74 (27)	1,921 (30)	1.56 (1.07 to 2.29)
Moderate	53 (30)	929 (23)	2.42 (1.51 to 3.86)†	71 (26)	1,376 (22)	1.92 (1.28 to 2.88)
Marked	40 (23)	488 (12)	3.41 (2.05 to 5.66)†	60 (22)	746 (12)	2.70 (1.68 to 4.34)
BPE (dichotomous)						
Minimal	36 (20)	1,397 (34)	Reference	66 (24)	2,342 (37)	Reference
Mild, moderate, or marked	140 (80)	2,674 (66)	2.28 (1.51 to 3.44)†	205 (76)	4,043 (63)	1.88 (1.33 to 2.65)†

Prédiction du risque : le rehaussement matriciel de fond

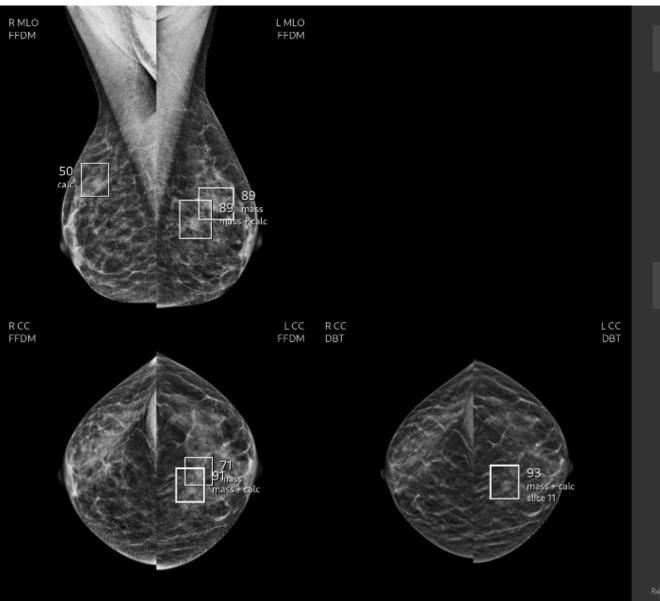
- 1. L'intensité du rehaussement matriciel de fond est associé à une augmentation du risque de cancer du sein (indépendamment de la densité mammaire
- 2. il existe des solutions de deep learning mesurant automatiquement le rehaussement de fond

R = 0;54 OR = 1,74 versus 1,39 pour FGT

Association of Breast Cancer Odds
with Background Parenchymal
Enhancement Quantified Using a
Fully Automated Method at MRI:
The IMAGINE Study
Radiology 2023

Prédiction du risque : le rehaussement matriciel de fond

- 1. L'intensité du rehaussement matriciel de fond est associé à une augmentation du risque de cancer du sein
- 2. il existe des solutions de deep learning mesurant automatiquement le rehaussement de fond
- 3. Le rehaussement matriciel de fond est dans la cinquième version du BIRADS


Prédiction du risque : en dehors de la densité mammaire et du rehaussement matriciel de fond : Comment fonctionne l'IA ?

- Analyse de mammographies 2 ans ou 5 ans avant un cancer
- Big data (Emory BrEast imaging Data set plus de 3 millions de mammography)
- Sur lesquelles le cancer n'était pas présent

C-View

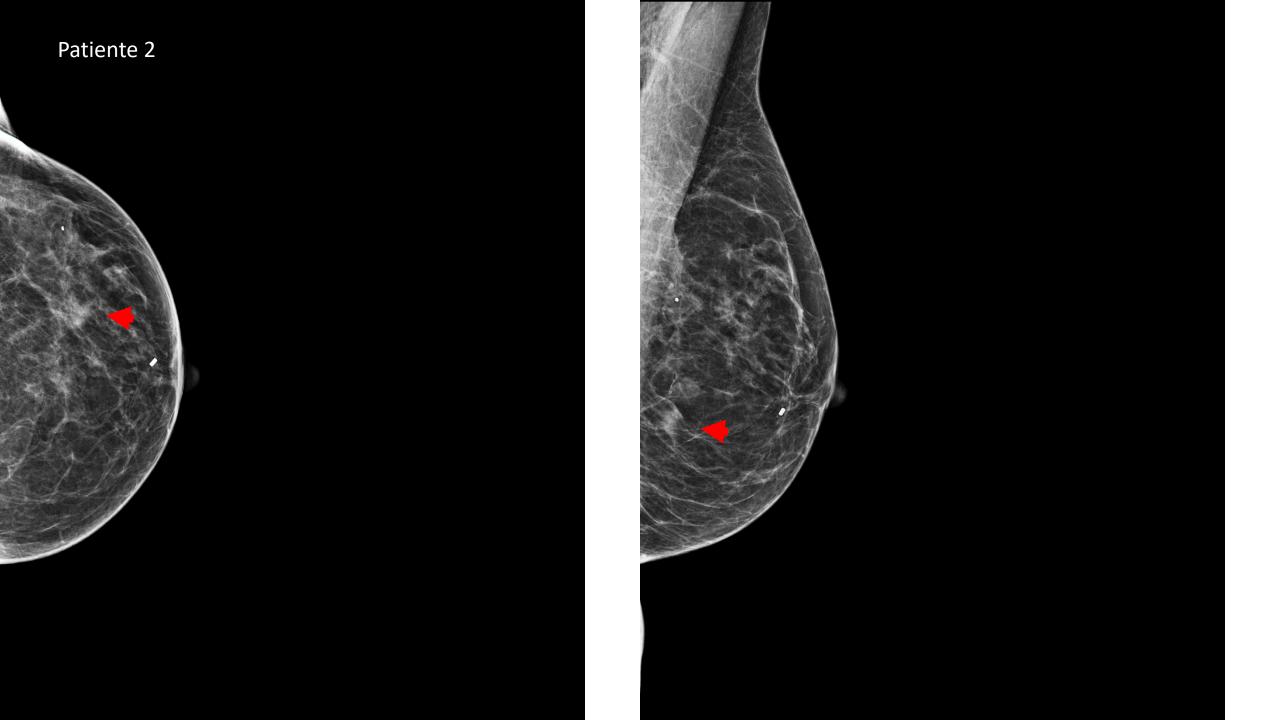
Patiente 1

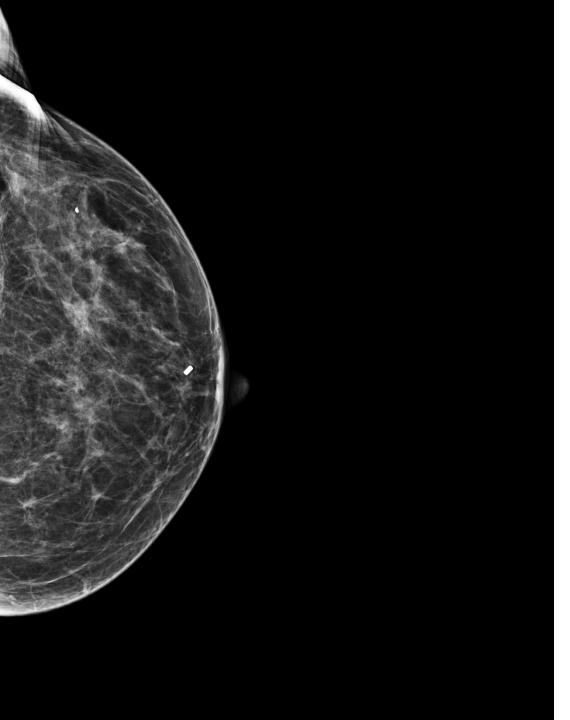
2023

Risque lié à la présence d'anomalies (dans l'image)

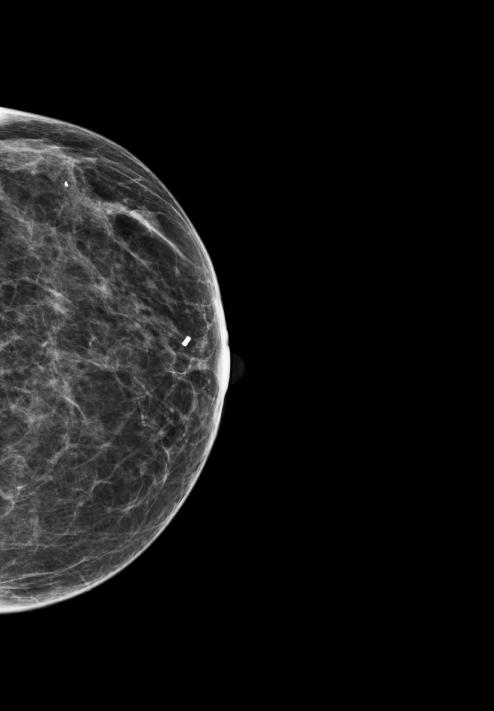
Élevé

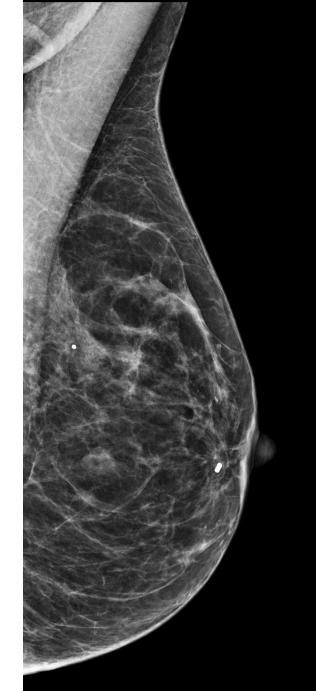
Score régional maximum

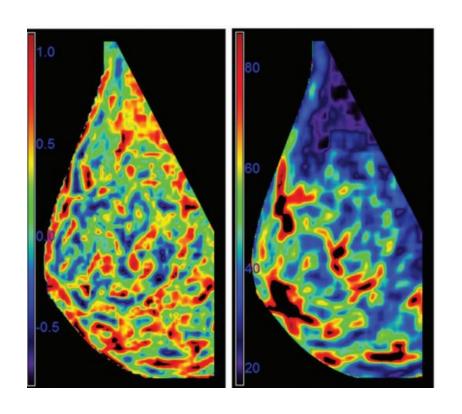

93

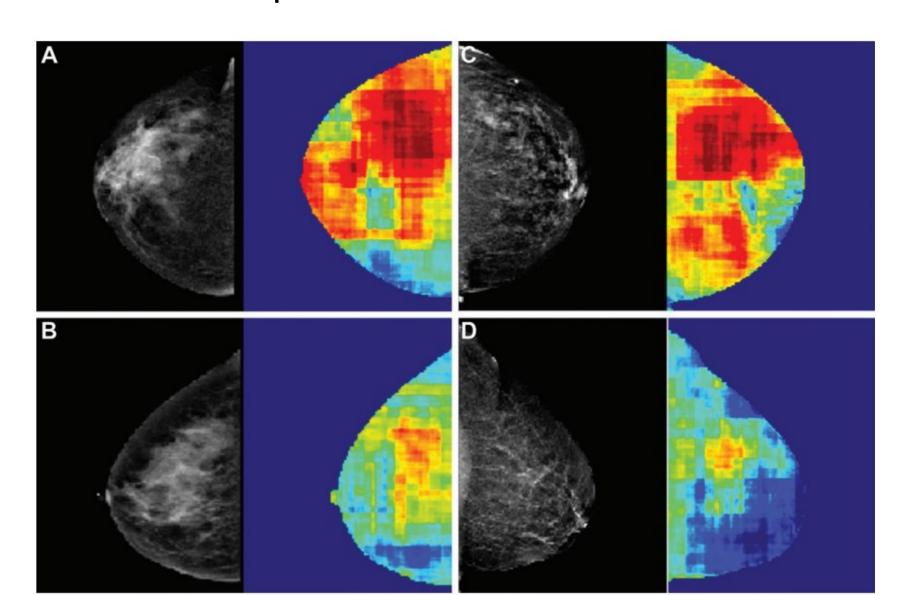

transpara* report

By ScreenPoint Medica


Résultats automatiques, seul le rapport radiologique fait foi Version 1.7

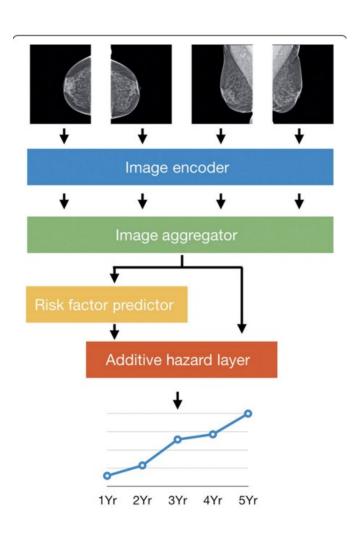

2021



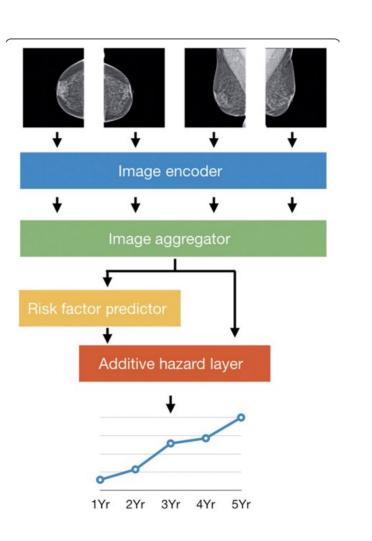

A-2

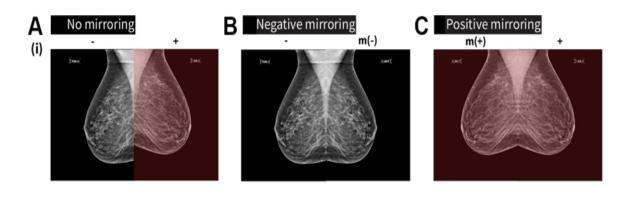
Prédiction du risque : en dehors de la densité mammaire et du rehaussement matriciel de fond : Comment fonctionne l'IA ?

- Analyse de mammographies 2 ans ou 5 ans avant un cancer
- Big data (Emory BrEast imaging Data set plus de 3 millions de mammography)
- Sur lesquelles le cancer n'était pas présent
- Cartographie de risque sur des paramètres de texture

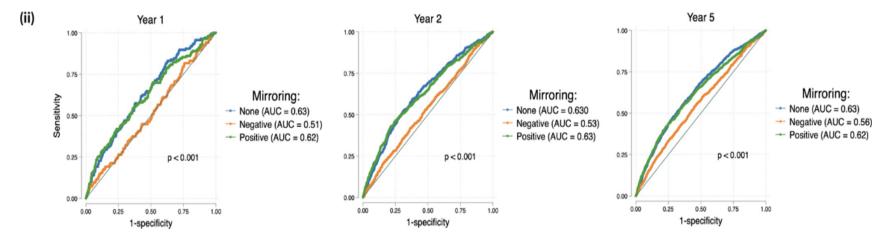


Des paramètres invisibles à l'œil nu et indépendants de la densité mammaire

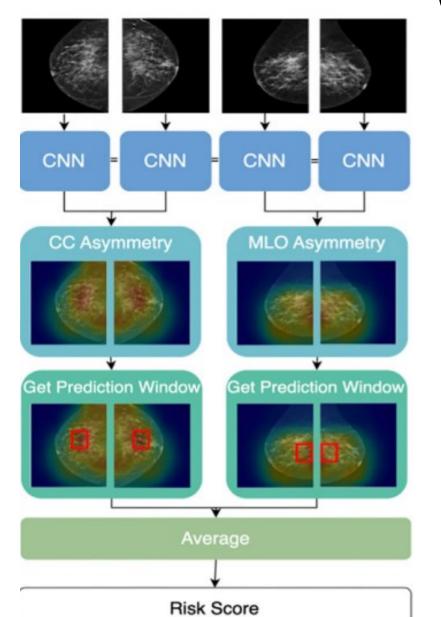


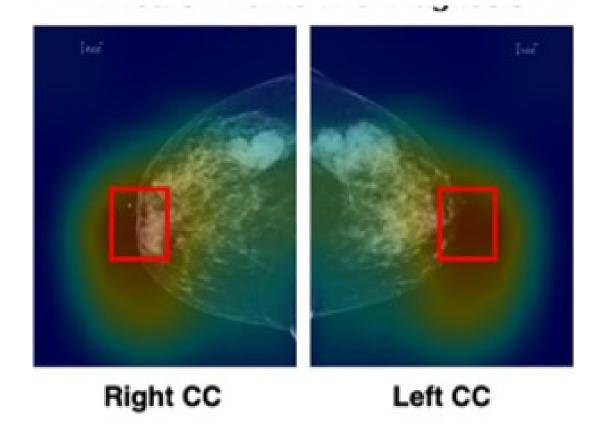

Ha Acad Rad 2019

Mirai : un modèle robuste méthodologiquement

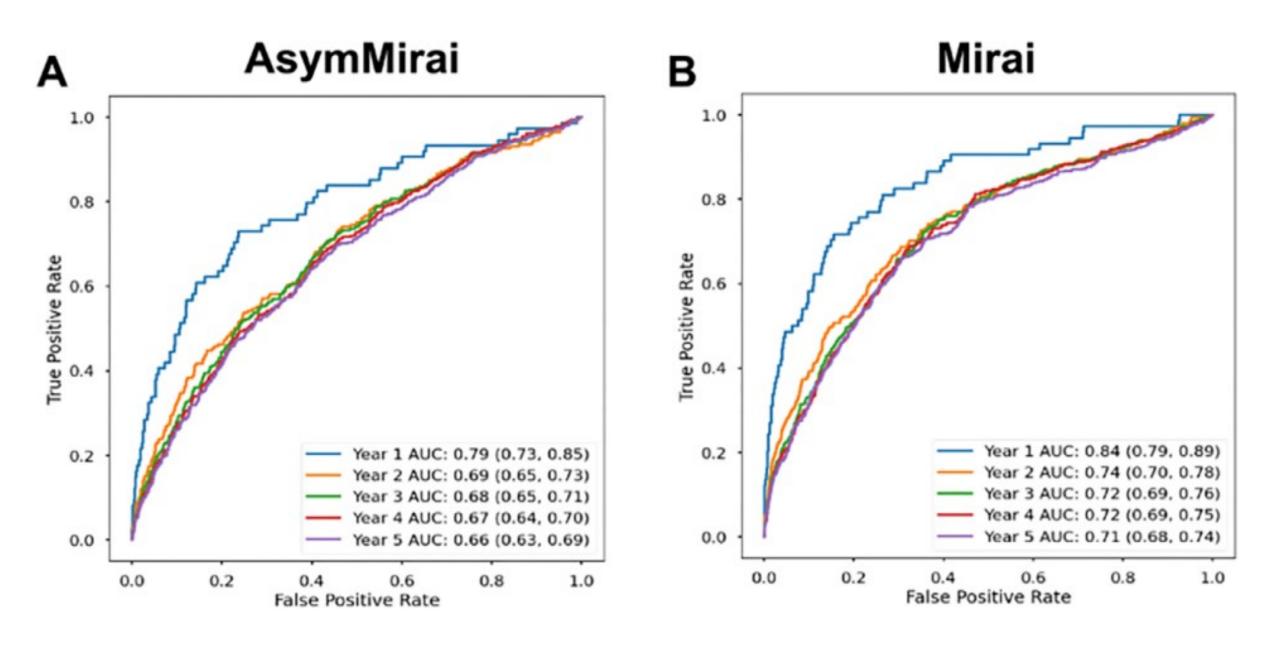


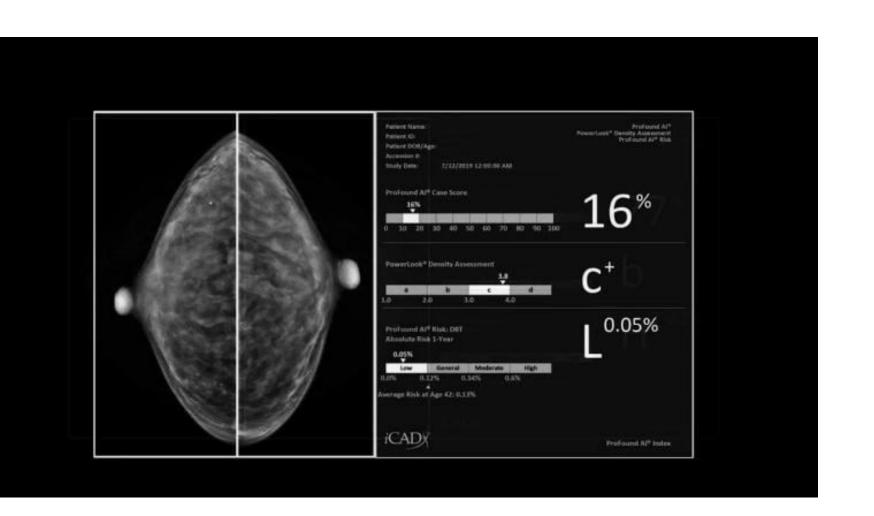
Mirai : un modèle robuste méthodologiquement

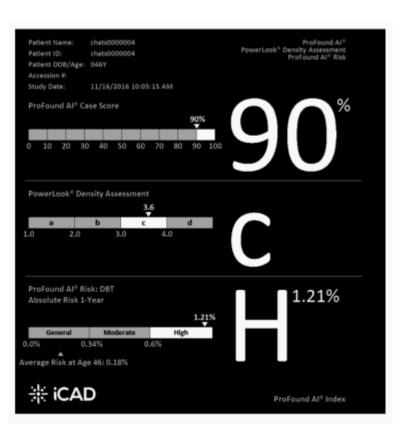

Omleye Radiology 2023


- AUC entre 0,5 et 0,6
- AUC augmenté par l'inclusion du coté ou va se développer le cancer :lésion pré-cancéreuse identifiée ?

AsymMirai : un modèle plus intuitif

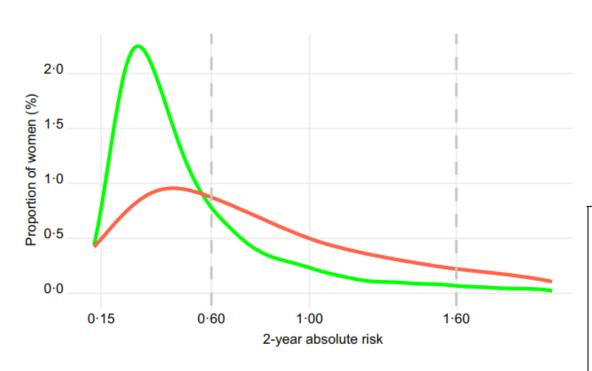

(lecture en miroir)


Donnelly Radiology 2024



Score élevé (asymétrie rétro aréolaire) Cancer qui se développe à 4ans

Profound AI risk model (ICAD): un modèle de risque européen



Profound AI risk model

	Proportion (%)	Risque absolu ‰	Risque relatif
Bas	4	1,3	0,4
Normal	60	3,4	1
Haut risque	27	8,6	2,4
Très haut risque	9	25,6	7,5

Validation externe du ProFund Al score

Eriksson, the Lancet Regional Health 2024

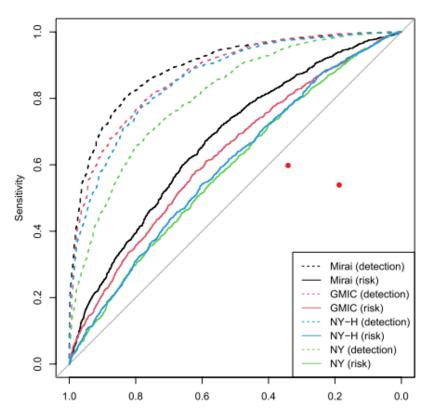
- Européen
- AUC = 0,72
- Utilisation de la TS
- Risque stratifié en fonction des guidelines

Risk group ¹	Cases N (%)	Controls N (%)	All women N (%)	Absolute risk ² %	RR (95% CI) ³
NICE					
General	280 (38%)	5,627 (72%)	5,907 (69%)	0.35	1·0 (ref.)
Moderate	294 (40%)	1,821 (23%)	2,115 (25%)	0.91	3.0 (2.6-3.5)
High	165 (2 2%)	364 (4.7%)	529 (6·2%)	2.32	6.7 (5.6-8.0)
USPSTF					
General	32 (4·3%)	1,011 (13%)	1,043 (12%)	0.2	1·0 (ref.)
Moderate	469 (6 3%)	6,159 (79%)	6,628 (78%)	0.5	2.5 (1.8-3.7)
High	238 (32%)	642 (8-2%)	880 (10%)	1.95	9-1 (6-3-13-4)

L'IA: un outil pour mieux prédire le risque?

Pourquoi la question est pertinente ?

• Comment cela marche ? Du plus simple au plus compliqué


Avec quels résultats ?

Et quelles limites ?

Avec quels résultats?

- AUC autour de 0,7 (de façon plutôt reproductible)
- Supérieur aux modèles de risque traditionnels
- Couplé à la densité mammaire
- Version à venir intègre les autres facteurs de risque

Santeramo Br Can Res 2024

Les modèle de risque ont des performances inférieures aux modèles diagnostiques

L'IA: un outil pour mieux prédire le risque?

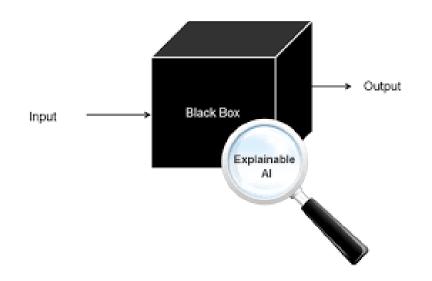
Pourquoi la question est pertinente ?

• Comment cela marche ? Du plus simple au plus compliqué

Avec quels résultats ?

Et quelles limites ?

Quelles limites?


NOS RECOMMANDATIONS

Que l'information soit accessible pour tous et faite de façon ciblée et adaptée à la personne.
 Individuellement, chacun-e devrait avoir la possibilité d'effectuer un entretien s'il le souhaite et de pouvoir échanger verbalement (de visu ou par téléphone) afin de pouvoir poser toute question essentielle à l'appropriation des enjeux du dépistage. Nous estimons nécessaire de pouvoir être informé-e-s pour nous permettre de faire un choix libre et éclairé.

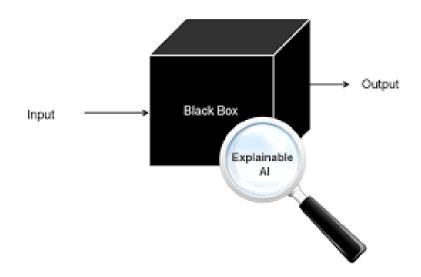
Quelles limites?

NOS RECOMMANDATIONS

Que l'information soit accessible pour tous et faite de façon ciblée et adaptée à la personne.
 Individuellement, chacun-e devrait avoir la possibilité d'effectuer un entretien s'il le souhaite et de pouvoir échanger verbalement (de visu ou par téléphone) afin de pouvoir poser toute question essentielle à l'appropriation des enjeux du dépistage. Nous estimons nécessaire de pouvoir être informé-e-s pour nous permettre de faire un choix libre et éclairé.

Radiology: Artificial Intelligence

COMMENTARY


Is It Time to Get Rid of Black Boxes and Cultivate Trust in AI?

Aimilia Gastounioti, PhD • Despina Kontos, PhD

Quelles limites?

NOS RECOMMANDATIONS

Que l'information soit accessible pour tous et faite de façon ciblée et adaptée à la personne. Individuellement, chacun-e devrait avoir la possibilité d'effectuer un entretien s'il le souhaite et de pouvoir échanger verbalement (de visu ou par téléphone) afin de pouvoir poser toute question essentielle à l'appropriation des enjeux du dépistage. Nous estimons nécessaire de pouvoir être informé-e-s pour nous permettre de faire un choix libre et éclairé.

Merci

- Aux participants de m'avoir écouté
- Aux organisateurs qui m'ont donné ce sujet et m'ont permis de devenir un expert (être expert, c'est tout l'art d'apprendre une science à des vétérans tout en étant débutant, Jdan Noritiov)
- Aux auteurs de m'avoir appris

• À la fonction

IA en imagerie et risques : prometteur, assez fascinant, méthodologiquement un peu bancal, résultats assez bons, éthique difficile Et demain ?

SIFEM 2025

12>14 JUIN I CNIT FOREST PARIS

CORINNE BALLEYGUIER & ISABELLE THOMASSIN-NAGGARA

